a2 United States Patent

Guan et al.

US009459988B2

US 9,459,988 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54) DYNAMIC CODE SWITCHING IN
DEBUGGING PROCESS

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
(72) Inventors: Xiao Feng Guan, Shanghai (CN); Jin
Song Ji, Shanghai (CN); Jian Jiang,
Shanghai (CN); Si Yuan Zhang,
Shanghai (CN)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 14/196,747
(22) Filed: Mar. 4, 2014
(65) Prior Publication Data
US 2014/0289707 Al Sep. 25, 2014
(30) Foreign Application Priority Data
Mar. 21, 2013 (CN) coeeeceiecrierenene 2013 1 0090980
(51) Imt.CL
GO6F 11/36 (2006.01)
GOGF 9/45 (2006.01)
(52) US. CL
CPC ... GO6F 11/3624 (2013.01); GO6F 11/3628
(2013.01); GO6F 11/3664 (2013.01); GO6F
8/443 (2013.01)
(58) Field of Classification Search

CPCcccee. GOG6F 7/78; GOG6F 8/00-8/78; GOGF
9/44-9/455; GOG6F 11/36
See application file for complete search history.

1. Initially load opt bin for each function

—

R

e

funcd
{opt)

2. Reload dbg bin for func1

/,,/:::::;“““”'“”“““””“”“:i:::~\\\\
vl Determining that func 1 \\F\3
[is to be debugged iy P
funci
funecl
(opt) (dbg)
/"" e

- c?
{op 7\”]“\ 3. Reload opt bin for funci ,ﬂwt)
//J

Determining that debugging
of func 1 is to be cancelled

(56) References Cited

U.S. PATENT DOCUMENTS

5,809,283 A * 9/1998 Vaidyanathan GOGF 17/5022
703/13
6,041,180 A * 3/2000 Perksc.ccoerns GOG6F 8/4434
717/151
6,553,565 B2 4/2003 Click, Jr. et al.
7,287,246 B2 10/2007 Tan et al.
7,607,123 B2 10/2009 Chavan
7,757,222 B2 7/2010 Liao et al.
8,108,849 B2 1/2012 Adolphson et al.
8,312,438 B2 11/2012 Luedde
2002/0100018 Al 7/2002 Click, Jr. et al.
(Continued)

OTHER PUBLICATIONS

Ung et al., Optimising Hot Paths in a Dynamic Binary Translator,
2001.*

(Continued)

Primary Examiner — Wei Zhen
Assistant Examiner — Zhan Chen
(74) Attorney, Agent, or Firm — Law Office of Jim Boice

(57) ABSTRACT

An optimized version of a binary and a non-optimized
debuggable version of a binary for each compiling unit in the
source code program are generated. The optimized versions
of'binaries of all compiling units are loaded into memory for
debugging, which is monitored. In response to determining
that a first compiling unit in the source code program is to
be debugged, the non-optimized debuggable version of the
binary is loaded into a memory location that was previously
used by the optimized version of the binary. In response to
determining that debugging of a second compiling unit in
the source code program is to be cancelled, the optimized
version of the binary of the second compiling unit is loaded
into a memory location that was previously used by the
non-optimized debuggable version of the binary.

20 Claims, 8 Drawing Sheets

e e

e

US 9,459,988 B2
Page 2

(56)

2002/0144245 Al* 10/2002 Luehccccooovvvinninnne

References Cited

U.S. PATENT DOCUMENTS

2004/0143814 Al* 7/2004 de Jong

2006/0064676 Al* 3/2006 Chavan ...

2009/0064113 Al1* 3/2009 Langman ...

2009/0307532 Al* 12/2009 Raber ...

2011/0271259 A1 11/2011 Moench et al.

OTHER PUBLICATIONS

N. Valerjev, “Debugging Optimized Code”, Penton, Electronic
Design, Jul. 28, 2011, pp. 1-16.

GO6F 8/41

717/140

GOGF 9/44589 U. Holzle et al.,, “Debugging Optimized Code With Dynamic

717/104 Deoptimization”, ACM, Proceedings of the ACM SIGPLAN 1992

GO6F 11/3628 Conference on Programming Language Design and Implementa-

717124 tion, 1992, pp. 32-43.

GO6F 9/45516

717/148

GO6F 11/3644

714/38.13
* cited by examiner

U.S. Patent

Oct. 4, 2016

Sheet 1 of 8

US 9,459,988 B2

12~ COMPUTER SYSTEM SERVER 28
30 MEMORY 34
N 5
RAM = CS——
18 fwi STORAGE ||
\ SYSTEM ||
PROCESSING CA}CHE - o
UNIT ¢ Bt
32 ﬂfli
18-, G
24 22
- U 20
§ s
1O
DISPLAY INTERFACES) NETWORK ADAPTER
14
1"[L
EXTERNAL
DEVICES)

FIG. 1

U.S. Patent Oct. 4, 2016 Sheet 2 of 8 US 9,459,988 B2

Hint main{int a) {
switch (a)
= I
case 1
At
break;

case 2=

O 00 N & U1 = W N =

a--;
break;

—
o

default:

e
ok

b
o
I
Yol

FIG. 2

U.S. Patent Oct. 4, 2016 Sheet 3 of 8 US 9,459,988 B2

in7 .L1:

in7 MOVE 3 rl;
ng @ LoAD rl1 = alsp]:
In 8 . ADD r2 = rl-1;
In8 @) STORE alsp] = x2;

In7 MOVE rl = r3;
in 9 JUMP .L3;
in 10

FIG. 3

U.S. Patent

Oct. 4, 2016

In7
in7

ns @
ing @

n8 @

In7

in9
in 10

(R
A T I = T I ST RN R S

-
fa

Sheet 4 of 8

L1
MCVE r3 = rl:;
LOAD rl = a[sp]:
ADD r2 = rl-1;
STORE a(sp] = r2;
MOVE rl = r3;
JUMP .13;

FIG. 4

Hint main{int a) {

=

switch (a)

|

gase 1:

FIG. 5

US 9,459,988 B2

U.S. Patent

US 9,459,988 B2

Oct. 4, 2016 Sheet 5 of 8
610
Compiling step |
Y 620
Initial loading step /
630
A 4 /
Monitoring step
) Cancelling
Debugging debugging
First reloading Second
step reloading step
N N
640 650

FIG. 6

U.S. Patent Oct. 4, 2016 Sheet 6 of 8 US 9,459,988 B2

func1 {opt) Bubble caused by
code | e e the size of funcl
section fune? {opt) #dbyg is larger
: \ than funcl
. {opt}
funcl#dbyg
{dbg)
comment fanc2#dbg
section {dba)
{dbg)

FIG. 7

U.S. Patent Oct. 4, 2016 Sheet 7 of 8 US 9,459,988 B2

1. Initially load opt bin for each function

2. Reload dbg bin for func1
/’:;f:::”wﬂ :::::\\\\\\
e Determining that func 1 B, ™
(\ (is to be debugged T e
.{Ezgz; funct
(dbg)
T T c?
(op \J\\B. Reload opt bin for func1 gl pt)
— T
func3 T— T e funed
(ap’tﬁ Determining that debugging {opt)
of func 1 is to be cancelled

FIG 8

U.S. Patent Oct. 4, 2016 Sheet 8 of 8 US 9,459,988 B2

System 900

Compiler
910

Debugger
920

FIG. 9

US 9,459,988 B2

1

DYNAMIC CODE SWITCHING IN
DEBUGGING PROCESS

This application is based on and claims the benefit of
priority from China (CN) Patent Application
201310090980.4, filed on Mar. 21, 2013, and herein incor-
porated by reference in its entirety.

BACKGROUND

The present invention relates to program debugging, and
more specifically, to a method and a system for dynamic
code switching in debugging process.

In programming, most applications are debugged at a
source code level. The source code is generally written in a
high level language. The high level language is defined in
comparison with the assembly language and is a kind of
programming closer to the natural language and mathematic
formula. The high level language is basically independent of
the hardware system of the machine, and is used write
programs in a way that is more readily understood by the
people. Therefore, all of programmers’ debugging opera-
tions like step through, set break points, etc are based on the
view of high level language source code. However, actually,
what a debugger receives, runs and operates on is a binary
of the program (a compiled version of the source code), so
as to generate a result of running. The debugger is respon-
sible for mapping source codes to binary or mapping binary
to source codes with the help of debug information gener-
ated by the compiler. Debug information provides, for
example, the following information: line number of each
instruction in the binary, data type of each memory location
in binary, etc.

FIGS. 2-5 show a simple debugging process. In FIG. 2,
the debugger handles debugging operations on a source code
view. Specifically, a break point at line 8 of the source code
is set. In FIG. 3, the debugger searches debug information
for related binary instructions. Here, it is noted that in order
to make binary instructions readable to understand the
present invention, FIGS. 3-4 show an assembly language
view using mnemonic symbols, which have a direct corre-
spondence with binary instructions. However, in reality,

5

10

15

20

25

30

35

40

2

compiler usually reduces execution time and size of binary
as much as possible but keeps logical identity by compiling,
which is called compiler optimization. However, optimiza-
tion creates lots of troubles for debugging, for example, it
moves, changes, splits, merges, or eliminates codes all
around, which makes order of source code information
totally a mess.

For example, there are the following optimization tech-
nologies: a scheduler may disorder instructions to avoid
hardware pipeline bubbles, and it’s side effect on debugging
is that continuous stepping will jump randomly in source
code view; loop invariant motion moves computations irrel-
evant to loop variable out of a loop, and it’s side effect on
debugging is stepping in and out of a loop body randomly.

Both performance and debuggability are important, but
they conflict with each other. Computer professionals have
tried many ways to make optimized debugging possible, for
example making new debugging information standards. No
matter which debugging information standard is used, a
common way is to maintain source code information in
binary and feed it to the debugger. However, this will not
resolve the problem, because in fact binary does not align
with source code any more by nature of optimization.

Some techniques have been proposed to provide more
accurate debugging experience. For example, a compiler
may have an option—qoptdebug. The use of this option for
compiling will generate pseudo codes showing optimized
high level language. For example, for the following func-
tion:

void foo(int %, int y, char* w)
{
char* s = w+1;
char* t = w+1;
mtz=x+y;
ntd=x+y;
int a = printf(“TEST\n");
for (int i = 0; 1 <4; i++)
printf(“%d %d %d %s %s\n”, a, z, d, s, t);

the following pseudo codes will be generated:

1 3 I void foo(long x, long y, char * w)
2 914
3 a = printf(“TEST/n”);
412 | @CSEQ = x +y;
5 printf(*%d %d %d %s %s/n”,a,@CSEQ,@CSEO,((char *)w+1),((char *)w+1));
6 printf(*%d %d %d %s %s/n”,a,@CSEQ,@CSEO,((char *)w+1),((char *)w+1));
7 printf(*%d %d %d %s %s/n”,a,@CSEQ,@CSEO,((char *)w+1),((char *)w+1));
8 printf(*%d %d %d %s %s/n”,a,@CSEQ,@CSEO,((char *)w+1),((char *)w+1));
913 | return;
10 1

such intermediate assembly language view does not neces- 55 In this case, debugging will be directly based on pseudo

sarily exist. For example, in FIG. 3, three lines of instruc-
tions with the line number 8 correspond to the source code
“a—;” at line 8 in FIG. 2. A case where the debugger runs
the binary codes and hits the break point is shown in FIG.
4. In FIG. 5, the breakpoint is reflected on the source code
view to show to the user. In the whole debugging process,
debug information is critical for an accurate and smooth
debug. More specifically, the base of this method lies in
mapping each instruction in binary to a source code line
accurately.

The process of transforming source code to binary is
called compiling. To make the execution of binary faster, a

60

65

codes. This method maps pseudo codes with binary very
well, since both of them are optimized codes. However,
mapping from original codes to pseudo codes is not readily
to be understood. Users may still be confused with debug-
ging unrecognized codes.

To achieve a balance between performance and debug-
gability, in one known method, for some subroutines, a
complier generates both of optimized object code and
debuggable object code. According to configuration file,
compiler switch, user input, etc, it is determined that, for
which subroutines two versions of object codes are gener-
ated. When one subroutine is determined to be debugged, it

US 9,459,988 B2

3

is possible to jump to debuggable object code by inserting a
jump instruction in optimized object code of the subroutine.
There are problems in the method as follows: upon all
subroutines or most of the subroutines are ever debugged,
optimized object codes of respective subroutines are jumped
to debuggable object codes gradually, until all jump to
debuggable object codes, accordingly, the execution speed
of the program will become more and more slow; addition-
ally, when the method is used, it is necessary to load both of
the two versions of object codes into memory, which greatly
consumes memory resource.

SUMMARY

A method, system, and/or computer program product
enable dynamic code switching in a debugging process. A
first version of a binary and a second version of a binary for
each compiling unit in the source code program are gener-
ated, where the first version is an optimized version, and
wherein the second version is a non-optimized debuggable
version. The first version of binaries of all compiling units
is loaded in memory for running by a debugger. The
debugging operation of the source code program is moni-
tored. In response to determining that a first compiling unit
in the source code program is to be debugged, the second
version of the binary of the particular compiling unit is
dynamically reloaded into a same address in memory as that
used by the first version of the binary of the first compiling
unit. In response to determining that debugging of a second
compiling unit in the source code program is to be cancelled,
the first version of binary of the second compiling unit is
dynamically reloaded into a same address in memory as that
used by the second version of the binary of the second
compiling unit.

In one embodiment of the present invention, a system for
dynamic code switching in debugging process, the system
comprises: a compiler, running on a hardware system,
configured to generate, for a source code program to be
debugged, a first version of binary and a second version of
binary for each compiling unit in the source code program,
wherein the first version is an optimized version, the second
version is a non-optimized debuggable version; and a debug-
ger configured to: load the first version of binaries of all the
compiling units in memory; monitor the user’s debugging
operation; in response to a determination that a compiling
unit in the source code program is to be debugged, dynami-
cally reload the second version of binary of the compiling
unit in the same storing address in the memory as that of the
first version of binary of the compiling unit; and in response
to a determination that debugging of a compiling unit in the
source code program is to be cancelled, dynamically reload
the first version of binary of the compiling unit in the same
storing address in the memory as that of the second version
of binary of the compiling unit.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Through the more detailed description of exemplary
embodiments of the present disclosure in the accompanying
drawings, the above and other objects, features and advan-
tages of the present disclosure will become more apparent,
wherein the same reference generally refers to the same
components in the exemplary embodiments of the present
disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 shows a block diagram of an exemplary computer
system/server 12 which is applicable to implement an
embodiment of the present invention.

FIGS. 2-5 show a simple debugging process.

FIG. 6 is a flowchart showing a method for dynamic code
switching in debugging process according to an embodiment
of the present invention.

FIG. 7 schematically shows layout of an executable
generated according to an embodiment of the present inven-
tion.

FIG. 8 schematically shows switching operation per-
formed by a debugger.

FIG. 9 is a block diagram showing a system for dynamic
code switching in debugging process according to an
embodiment of the present invention.

DETAILED DESCRIPTION

Some preferable embodiments will be described in more
detail with reference to the accompanying drawings, in
which the preferable embodiments of the present disclosure
have been illustrated. However, the present disclosure can be
implemented in various manners, and thus should not be
construed to be limited to the embodiments disclosed herein.
On the contrary, those embodiments are provided for the
thorough and complete understanding of the present disclo-
sure, and completely conveying the scope of the present
disclosure to those skilled in the art.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A

US 9,459,988 B2

5

computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

FIG. 1 shows an exemplary computer system/server 12
which is applicable to implement the embodiments of the
present invention. Computer system/server 12 shown in
FIG. 1 is only illustrative and is not intended to suggest any
limitation as to the scope of use or functionality of embodi-
ments of the invention described herein.

As shown in FIG. 1, computer system/server 12 is shown
in the form of a general-purpose computing device. The

10

15

20

25

30

35

40

45

50

55

60

65

6

components of computer system/server 12 may include, but
are not limited to, one or more processors or processing units
16, a system memory 28, and a bus 18 that couples various
system components including system memory 28 to proces-
sor 16.

Bus 18 represents one or more of any of several types of
bus structures, including a memory bus or memory control-
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi-
tectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random
access memory (RAM) 30 and/or cache memory 32. Com-
puter systeny/server 12 may further include other removable/
non-removable, volatile/non-volatile computer system stor-
age media. By way of example only, storage system 34 can
be provided for reading from and writing to a non-remov-
able, non-volatile magnetic media (not shown in FIG. 1 and
typically called a “hard drive”). Although not shown in FIG.
1, a magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each drive can be connected to bus 18 by
one or more data media interfaces. Memory 28 may include
at least one program product having a set (e.g., at least one)
of program modules that are configured to carry out the
functions of embodiments of the invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an imple-
mentation of a networking environment. Program modules
42 generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as a keyboard, a
pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/0O) interfaces 22. Still yet, com-
puter system/server 12 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of
computer system/server 12 via bus 18. It should be under-
stood that although not shown in the drawing, other hard-
ware and/or software components could be used in conjunc-
tion with computer system/server 12. Examples, include, but
are not limited to: microcode, device drivers, redundant

US 9,459,988 B2

7

processing units, external disk drive arrays, RAID systems,
tape drives, and data archival storage systems, etc.

With reference now to FIG. 6, FIG. 6 is a flowchart
showing a method for dynamic code switching in debugging
process according to an embodiment of the present inven-
tion. The method for dynamic code switching is executed by
an Integrated Development Environment (IDE) tool, for
example. The IDE tool is an application program for pro-
viding a program development environment, and generally
includes a code editor, a complier, a linker, a debugger and
a graphical user interface, etc. The IDE tool includes, for
example, Visual Studio series of Microsoft, C++ Builder,
Delphi series of Borland, etc. The process in the flowchart
in FIG. 6 includes the following steps: a compiling step 610,
an initial loading step 620, a monitoring step 630, a first
reloading step 640 and a second reloading step 650.

In the following, each step in the method for dynamic
code switching of the present invention in FIG. 6 will be
described in detail.

In step 610, for a source code program to be debugged, a
first version of binary and a second version of binary are
generated for each compiling unit in the source code pro-
gram, wherein the first version is an optimized version, the
second version is a non-optimized debuggable version. A
compiler compiles the source code program in a unit of the
compiling unit. Here, the compiling unit may be a function
or a method. For example, for a function funcl in the source
code program, the compiler generates optimized binary
funcl(opt) and non-optimized debuggable binary funcl
(dbg).

Examples of said optimization may include one of func-
tion level optimization, region based optimization, basic
block based optimization, and peephole based optimization.
The compiler optimization is used to reduce execution time
and/or space without changing logical behavior of the pro-
gram. For example, optimization of a whole function may
change logical behavior of one basic block; but basic block
based optimization will keep consistency with the function
because a basic block is a part of the function. Most of
current compiler optimizations are at function level. Only
some of loop optimizations are region based, some of
scheduling is basic block based, and most of scalar optimi-
zations are peephole based and inside a basic block. The
present invention uses a function or a method as a unit of

25

30

40

8

of the two versions. Compatibility is important during
debugging, because either version needs to be used with
other parts of the program. For a function or a method, the
compiler generates different symbols for the two versions of
binaries that may be accessed from outside or by a linker. In
order to avoid tons of work to adapt the compiler/linker to
create, consume symbols of two versions of binaries in one
space, in one embodiment of the present invention, a first
version of binary of a compiling unit is generated through
compilation with optimization of the compiling unit, a
second version of binary of the compiling unit is generated
through compilation without optimization of the compiling
unit after modifying the name of the compiling unit. The
modified name of a compiling unit is related to the original
name of the compiling unit.

In one embodiment of the present invention, a function
funcl is taken as an example. The compiler copies original
function code, modifies the function name as funcl#dbg,
then compiles both of them. Specifically, for the function
funcl, it may be compiled with optimization by various
optimization levels; for the function funcl#dbg, it may be
compiled without optimization. With this method, any gen-
erated binary will be compatible with the whole program.

In one embodiment of the present invention, debug infor-
mation is generated only for the second version of binary.
The invention’s reloading mechanism (to be described in
detail later) guarantees to always debug on non-optimized
binary. Since debug information is not generated for the first
version of binary, maintaining and switching between two
versions of incompatible debug information is avoided.

In one embodiment of the present invention, in order to
enable dynamic switching between two versions of binaries,
it is also necessary to calculate the space (code size) in the
executable, occupied by the compiled binary of one func-
tion. Specifically, code sizes of the two versions of binaries
are recorded, and the larger code size is used as the occupied
space.

For example, the following algorithm may be used to
generate two versions of binaries of each function in a
program. This algorithm is only an illustrative example, and
should not be construed as any limitation to the scope of the
invention. Those skilled in the art can easily think of other
algorithms.

For each function f in program
Copy f to f#dbg

//for each function f in the program
//copy the function f as fdbg

Compile f with various optimization level

opt_size = code size of

//compile the function f with any optimization level
//opt_size=code size of

Compile f#dbg without any optimization

Generate debug information of f#dbg
dbg_size = code size of f#dbg

//compile the function f#dbg without optimization
//generate debug information of f#dbg
//dbg_size= code size of f#dbg

Record code size of f as max(opt_size, dbg_size)
//record code size of f as the larger one of opt_size and dbg_size

compiling and reloading, so as to adapt to most optimiza-
tions and still have good reloading time. In addition to the
above mentioned optimization methods given as examples,
optimizations used when optimized binary are generated in
step 610 may also include code optimizations of various
levels known in the prior art or developed in the future.
In order to achieve the dynamic code switching in the
debugging process, it is critical to achieve logical equiva-
lence of the generated two versions of binaries, and to make
other parts of the executable program compatible with both

60

65

With the above algorithm, two versions of binaries (com-
piled versions of original codes) are generated, which are for
example referred to as opt bin (i.e., optimized version) and
dbg bin (i.e., non-optimized version) below. These two
versions of binaries are linked into a same executable by a
linker. In one embodiment of the present invention, the
generated executable has a novel layout, which contains two
versions of binaries for each function, i.e., opt bin and dbg
bin. All optimized versions of binaries are grouped together
in a general way (the way in which only a single version of

US 9,459,988 B2

9

binary is generated). However, since the larger one of code
sizes of the two versions is used as the code size of the
optimized version according to the above algorithm, a
bubble may exist between opt bins of respective functions,
which is to leave enough space for switching to dbg bins. On
the other hand, dbg bins of respective functions are grouped
together and stored in the “comment” section of the execut-
able.

In one embodiment of the present invention, the first
version of binary and the second version of binary of the
compiling unit are contained in the same executable gener-
ated by linkage of a linker, and the second version of binary
are located in the “comment” section of the executable.

In one embodiment of the present invention, the size of
the space allocated to the first version of binary in the
executable is equal to the larger one of code size of the first
version of binary and code size of the second version of
binary.

FIG. 7 schematically shows a layout of an executable
generated according to an embodiment of the present inven-
tion. In FIG. 7, opt bins of respective functions are grouped
together and stored in the code section, dbg bins of respec-
tive functions are grouped together and stored in the com-
ment section, and a bubble between funcl(opt) and func2
(opt) is shown as an example. The bubble is caused due to
the fact that the code size of binary of the func1#dbg is larger
than the code size of binary of the func1, and the existence
of the bubble enables convenient dynamic switching
between the two versions of binaries. Additionally, such
layout of the present invention enables the thus generated
executable programs to be run in a general debugger that
cannot perform dynamic code switching, thereby achieving
compatibility to some extent.

FIG. 8 schematically shows switching operation per-
formed by a debugger. In FIG. 8, in step 1, opt bins are
loaded for all functions; in step 2, in response to a determi-
nation that funcl is to be debugged, the dbg bin is reloaded
for the funcl; in step 3, in response to a determination that
debugging of the funcl is to be cancelled, the opt bin is
reloaded for the funcl. In FIG. 8, steps 2 and 3 are triggered
to be performed in response to occurrence of specific events,
and there is no fixed order for them.

With reference to FIG. 6 again, steps 620-650 are per-
formed by the debugger, and correspond to the trigger
behaviors in FIG. 8.

In step 620, the debugger loads the first version of binaries
of all the compiling units in memory to be run by the
debugger, as shown in step 1 in FIG. 8. This ensures that
performance is prioritized by default. Here, it is noted that

20

25

40

45

10

when the optimized version of binary is loaded into the
memory, the bubbles are reserved in the memory so as to
leave enough space for possible later code switching.

In step 630, the debugger monitors the user’s debugging
operation. The debugging operation refers to various debug-
ging operations on source codes performed by the user on a
source code view through a debugger. Examples of debug-
ging operations may include: set a breakpoint, delete a
breakpoint, step into, step out, step over, run to cursor, etc.

According to the result of monitoring in step 630, in step
640, in response to the determination that a compiling unit
in the source code program is to be debugged, the second
version of binary of the compiling unit is dynamically
loaded in the same storing address in the memory as that of
the first version of binary of the compiling unit. For
example, step 2 in FIG. 8 may be referred to. In one
embodiment, in the storing location of the first version of
binary, the first version of binary and a bubble with the size
equal to the difference between sizes of the first version of
binary and the second version of binary are included.

According to the result of monitoring in step 630, in step
650, in response to a determination that debugging of a
compiling unit in the source code program is to be cancelled,
the first version of binary of the compiling unit is dynami-
cally reloaded in the same storing address in the memory as
that of the second version of binary of the compiling unit.
For example, step 3 in FIG. 8 may be referred to.

According to one embodiment of the present invention,
the determination that a compiling unit in the source code
program is to be debugged comprises: setting a first break-
point in a compiling unit; or debugging focus entering into
a compiling unit.

According to one embodiment of the present invention,
the determination that debugging of a compiling unit in the
source code program is to be cancelled comprises: deleting
all breakpoints in a compiling unit; or debugging focus
leaving a compiling unit in which no breakpoint is set.

Only non-exhaustive examples of the determination that a
function is to be debugged and the determination that
debugging of a function is to be cancelled are given in the
above. For example, debugging focus entering into a com-
piling unit (here a function or a method) may be caused by
debugging operations such as step into, run to cursor, etc;
debugging focus leaving a compiling unit may be caused by
debugging operations such as step out, run to cursor, etc.

In the following, an example of an algorithm that may be
used by a debugger to achieve dynamic code switching is
given.

//--a case where running focus PC enters function A from function B --
When execution stops and PC changes cross, from function B to A
//if state of function A is optimized

If state[A] is OPT

Reload A#dbg in binary to address of A in memory

function A in memory
Set state[A] as DBG
If bp_count[B] is 0

sion)

//reloading binary of A#dbg in the address of

//setting state of function A as debugging

//if the number of breakpoints in function B is 0
Reload B (opt version) in binary to address of B in memory

//reloading binary (optimized ver-

of B in the address of function B in memory
//setting state of function B as optimized
//--a case of setting a breakpoint in function C--

Set state[B] as OPT

When set break point in function C
bp_count[C] = bp_count[C] + 1

If state[C] is OPT

Reload C#dbg in binary to address of C in memory

function C in memory
Set state[C] as DBG

//breakpoint counter of function C +1
//if state of function C is optimized
//reloading binary of C#dbg in the address of

//setting state of function C as debugging

//-- a case of deleting a breakpoint in function D --

US 9,459,988 B2

11

-continued

12

When remove break point in function D
bp_count[D] = bp_count[D] - 1
If state[D] is DBG and bp_count[D]==0 and PC not stopping in D

//breakpoint counter of function D -1
//if state of function D is debugging

and breakpoint counter of function D is 0 and running focus PC does not stay in function D

Reload D (opt version) in binary to address of D in memory
of D in the address of function D in memory
Set state[D] as OPT

//reloading binary (optimized version)

//setting state of function D as optimized

The above algorithms are only illustrative examples, and
should not be construed as any limitations to the scope of the
invention. Those skilled in the art may readily think of other
algorithms to control dynamic code switching of the debug-
ger.

FIG. 9 is a block diagram showing a system for dynamic
code switching in debugging process according to an
embodiment of the present invention. The system 900
includes a compiler 910 and a debugger 920. The compiler
is configured to generate, for a source code program to be
debugged, a first version of binary and a second version of
binary for each compiling unit in the source code program,
wherein the first version is an optimized version, the second
version is a non-optimized debuggable version. The debug-
ger is configured to: load the first version of binaries of all
the compiling units in memory; monitor the user’s debug-
ging operation; in response to a determination that a com-
piling unit in the source code program is to be debugged,
dynamically reload the second version of binary of the
compiling unit in the same storing address in the memory as
that of the first version of binary of the compiling unit; and
in response to a determination that debugging of a compiling
unit in the source code program is to be cancelled, dynami-
cally reload the first version of binary of the compiling unit
in the same storing address in the memory as that of the
second version of binary of the compiling unit.

In another embodiment, the system for dynamic code
switching in debugging process of the present invention
further includes a linker configured to generate an execut-
able by linking the first version of binaries and the second
version of binaries of all the compiling units. The second
versions of binaries are located in the comment section of
the executable.

Based on the above description, it is desirable to provide
a dynamic code switching method and system capable of
achieving both performance and debuggability in debugging
process.

To solve the above technical problems, the inventor
proposes a concept of dynamic code switching, and pro-
poses a technology necessary to achieve dynamic code
switching.

Thus, as described herein and according to one aspect of
the present invention, there is provided a method for
dynamic code switching in debugging process comprising:
generating, for a source code program to be debugged, a first
version of binary and a second version of binary for each
compiling unit in the source code program, wherein the first
version is an optimized version, the second version is a
non-optimized debuggable version; loading the first version
of binaries of all the compiling units in memory to be run by
a debugger; monitoring a user’s debugging operation; in
response to a determination that a compiling unit in the
source code program is to be debugged, dynamically reload-
ing the second version of binary of the compiling unit in the
same storing address in the memory as that of the first
version of binary of the compiling unit; and in response to
a determination that debugging of a compiling unit in the

10

15

20

25

30

35

40

45

50

55

60

65

source code program is to be cancelled, dynamically reload-
ing the first version of binary of the compiling unit in the
same storing address in the memory as that of the second
version of binary of the compiling unit.

According to another aspect of the present invention,
there is provided a system for dynamic code switching in
debugging process comprising a compiler and a debugger.
The compiler is configured to generate, for a source code
program to be debugged, a first version of binary and a
second version of binary for each compiling unit in the
source code program, wherein the first version is an opti-
mized version, the second version is a non-optimized debug-
gable version. The debugger is configured to: load the first
version of binaries of all the compiling units in memory;
monitor the user’s debugging operation; in response to a
determination that a compiling unit in the source code
program is to be debugged, dynamically reload the second
version of binary of the compiling unit in the same storing
address in the memory as that of the first version of binary
of'the compiling unit; and in response to a determination that
debugging of a compiling unit in the source code program is
to be cancelled, dynamically reload the first version of
binary of the compiling unit in the same storing address in
the memory as that of the second version of binary of the
compiling unit.

According to a further aspect of the present invention,
there is provided a system for dynamic code switching in
debugging process, comprising: means for generating, for a
source code program to be debugged, a first version of
binary and a second version of binary for each compiling
unit in the source code program, wherein the first version is
an optimized version, the second version is a non-optimized
debuggable version; means for loading the first version of
binaries of all the compiling units in memory to be run by
a debugger; means for monitoring a user’s debugging opera-
tion; means for, in response to a determination that a
compiling unit in the source code program is to be
debugged, dynamically reloading the second version of
binary of the compiling unit in the same storing address in
the memory as that of the first version of binary of the
compiling unit; and means for, in response to a determina-
tion that debugging of a compiling unit in the source code
program is to be cancelled, dynamically reloading the first
version of binary of the compiling unit in the same storing
address in the memory as that of the second version of
binary of the compiling unit.

The invention introduces a new framework of debugging,
which is capable of achieving execution speed of optimized
code and debuggability of non-optimized code simultane-
ously. Basically, the present invention reduces program
execution time during debugging at the cost of reloading
time. Since function level optimization often gives more
than 50% performance improvement and reloading only
occurs when manual debugging is involved, the improve-
ment is significant.

Furthermore, since only one compiled version of each
compiling unit is loaded in the memory at one moment,

US 9,459,988 B2

13

memory recourse is saved. In addition, since the binary
version (non-optimized version) of the compiling unit for
which the debugging is cancelled will be dynamically auto-
matically switched back to the optimized version, high
performance can be maintained all the time.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the {functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:

1. A method for dynamic code switching in a debugging
process, the method comprising:

generating, by one or more processors and for a source

code program to be debugged, a first version of a binary
and a second version of the binary for each compiling
unit in the source code program, wherein the first
version is an optimized version of the binary, wherein
the second version is a non-optimized debuggable
version of the binary, and wherein the first version of
the binary and the second version of the binary are from
a same version of a compiling unit in the source code
program;

loading, by one or more processors, optimized versions of

binaries of all compiling units in memory for running
by a debugger;

monitoring, by one or more processors, a debugging

operation of the source code program;

in response to a determination that a first compiling unit

in the source code program is to be debugged, dynami-
cally reloading, by one or more processors, the second
version of the binary of the first compiling unit into a
first block of memory used by the first version of the
binary of the first compiling unit, wherein the second
version of the binary of the first compiling unit replaces
the first version of the binary of the first compiling unit
in the first block of memory; and

in response to a determination that debugging of a second

compiling unit in the source code program is to be

10

15

20

25

30

35

40

45

50

55

60

65

14

cancelled, dynamically reloading, by one or more pro-
cessors, the first version of the binary of the second
compiling unit into a second block of memory used by
the second version of the binary of the second compil-
ing unit, wherein the first version of the binary of the
second compiling unit replaces the second version of
the binary of the second compiling unit in the second
block of memory.

2. The method according to claim 1, wherein each com-
piling unit is a method.

3. The method according to claim 1, wherein determining
that a compiling unit in the source code program is to be
debugged comprises:

setting, by one or more processors, a first breakpoint in a

particular compiling unit; and

setting, by one or more processors, a “debugging focus

entering” command into the particular compiling unit.

4. The method according to claim 1, wherein determining
that debugging of a particular compiling unit in the source
code program is to be cancelled comprises:

deleting, by one or more processors, all breakpoints in the

particular compiling unit; and

setting, by one or more processors, a “debugging focus

leaving” command into the particular compiling unit in
which no breakpoint is set.

5. The method according to claim 1, further comprising:

generating, by one or more processors, debug information

for the second version of binaries generated from the
source code program.

6. The method according to claim 1, wherein optimizing
the first version of the binary comprises one of a function
level optimization, a region based optimization, a basic
block based optimization, and a peephole based optimiza-
tion.

7. The method according to claim 1, wherein the first
version of binaries and the second version of binaries of the
compiling units are contained in a same executable gener-
ated by linkage of a linker, wherein the second version of
binaries are located in a comment section of the same
executable, and wherein the comment section contains only
text that is non-executable by a processor while stored in the
comment section.

8. The method according to claim 7, wherein a space size
allocated to the first version of binaries in the same execut-
able is equal to a larger one of code size of the first version
of binaries and code size of the second version of binaries.

9. The method according to claim 1, wherein a second
version of a binary of a compiling unit is generated by
compilation without optimization after only a name of the
compiling unit is modified.

10. The method according to claim 9, wherein the modi-
fied name of the compiling unit is related to an original name
of the compiling unit.

11. A computer system comprising:

a processor, a computer readable memory, and a computer

readable storage medium;

first program instructions to generate, for a source code

program to be debugged, a first version of a binary and
a second version of the binary for each compiling unit
in the source code program, wherein the first version is
an optimized version of the binary, wherein the second
version is a non-optimized debuggable version of the
binary, and wherein the first version of the binary and
the second version of the binary are from a same
version of a compiling unit in the source code program;

US 9,459,988 B2

15

second program instructions to load optimized versions of
binaries of all compiling units in memory for running
by a debugger;

third program instructions to monitor a debugging opera-

tion of the source code program;

fourth program instructions to, in response to a determi-

nation that a first compiling unit in the source code
program is to be debugged, dynamically reload the
second version of the binary of the first compiling unit
into a first block of memory used by the first version of
the binary of the first compiling unit, wherein the
second version of the binary of the first compiling unit
replaces the first version of the binary of the first
compiling unit in the first block of memory; and

fifth program instructions to, in response to a determina-

tion that debugging of a second compiling unit in the
source code program is to be cancelled, dynamically
reload the first version of binary of the second com-
piling unit into a second block of memory used by the
second version of the binary of the second compiling
unit, wherein the first version of the binary of the
second compiling unit replaces the second version of
the binary of the second compiling unit in the second
block of memory; and wherein
the first, second, third, fourth, and fifth program instructions
are stored on the computer readable storage medium, and
wherein the first, second, third, fourth, and fifth program
instructions are executed by the processor via the computer
readable memory.

12. The computer system according to claim 11, wherein
each compiling unit is a method.

13. The computer system according to claim 11, wherein
determining that a compiling unit in the source code pro-
gram is to be debugged comprises:

sixth program instructions to set a first breakpoint in a

particular compiling unit; and

seventh program instructions to set a “debugging focus

entering” command into the particular compiling unit;
and wherein
the sixth and seventh program instructions are stored on the
computer readable storage medium, and wherein the sixth
and seventh program instructions are executed by the pro-
cessor via the computer readable memory.

14. The computer system according to claim 11, wherein
determining that debugging of a particular compiling unit in
the source code program is to be cancelled comprises:

sixth program instructions to delete all breakpoints in the

particular compiling unit; and

seventh program instructions to set a “debugging focus

leaving” command into the particular compiling unit in
which no breakpoint is set; and wherein
the sixth and seventh program instructions are stored on the
computer readable storage medium, and wherein the sixth
and seventh program instructions are executed by the pro-
cessor via the computer readable memory.

15. The computer system according to claim 11, further
comprising:

sixth program instructions to generate debug information

for the second version of binaries generated from the
source code program; and wherein

10

15

20

25

30

35

40

45

50

55

60

16

the sixth program instructions are stored on the computer
readable storage medium, and wherein the sixth program
instructions are executed by the processor via the computer
readable memory.

16. The computer system according to claim 11, wherein
optimizing the first version of the binary comprises one of a
function level optimization, a region based optimization, a
basic block based optimization, and a peephole based opti-
mization.

17. The computer system according to claim 11, wherein
the first version of binaries and the second version of
binaries of the compiling units are contained in a same
executable generated by linkage of a linker, wherein the
second version of binaries are located in a comment section
of the same executable, and wherein the comment section
contains only text that is non-executable by a processor
while stored in the comment section.

18. The computer system according to claim 17, wherein
a space size allocated to the first version of binaries in the
same executable is equal to a larger one of code size of the
first version of binaries and code size of the second version
of binaries.

19. The method of claim 1, wherein debug information is
not generated for the first version of the binary.

20. A computer program product for dynamic code
switching in a debugging process, the computer program
product comprising a non-transitory computer readable stor-
age medium having program code embodied therewith, the
program code readable and executable by a processor to
perform a method comprising:

generating, for a source code program to be debugged, a

first version of a binary and a second version of the
binary for each compiling unit in the source code
program, wherein the first version is an optimized
version of the binary, wherein the second version is a
non-optimized debuggable version of the binary, and
wherein the first version of the binary and the second
version of the binary are from a same version of a
compiling unit in the source code program;

loading optimized versions of binaries of all compiling

units in memory for running by a debugger;
monitoring a debugging operation of the source code
program;

in response to a determination that a first compiling unit

in the source code program is to be debugged, dynami-
cally reloading the second version of the binary of the
first compiling unit into a first block of memory used by
the first version of the binary of the first compiling unit,
wherein the second version of the binary of the first
compiling unit replaces the first version of the binary of
the first compiling unit in the first block of memory;
and

in response to a determination that debugging of a second

compiling unit in the source code program is to be
cancelled, dynamically reloading the first version of
binary of the second compiling unit into a second block
of memory used by the second version of the binary of
the second compiling unit, wherein the first version of
the binary of the second compiling unit replaces the
second version of the binary of the second compiling
unit in the second block of memory.

#* #* #* #* #*

